STEM CELL PADA CEDERA OTAK TRAUMATIK
Keywords:
traumatic brain injury, traumatic brain injury, TBI, stem cell.Abstract
Traumatic brain injury is a mechanical trauma to the head, either directly or indirectly, which causes impaired neurological function, namely physical, cognitive, psychosocial functioning, both temporarily and permanently. Traumatic brain injury is a very complex disease. Currently, there is no effective treatment that can reduce the effects of the primary injury, only therapy that can inhibit its development. Interventions to improve the quality of life of traumatic brain injury patients used to include drug treatment, surgery, and rehabilitation therapy have had poor results. The recent clinical use of stem cells as a possible therapeutic application. Stem cell therapy is used in regenerative medicine to restore damaged neurons. Stem cell is a cell that exhibits a multipotent capacity to differentiate into different cell types and has the capacity for self-renewal. In different preclinical studies, conducted in animal models of traumatic brain injury, stem cell transplantation has led to improvements in several neurological parameters. Mesenchymal stem cell therapy is one of the most potent and attractive options for regenerative therapy of traumatic brain injury. This therapy has shown its potential in clinical aspects. Although there is much basic research on traumatic brain injury, especially on the complex pathophysiology and applicability of stem cell therapy, there are still many issues that need to be resolved to determine the best method for recovery of brain function.
References
Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of Stem Cell Treatment for Traumatic Brain Injury. Front Cell Neurosci. 2019;13:301. Published 2019 Aug 13. doi:10.3389/fncel.2019.00301
Schepici, Giovanni & Silvestro, Serena & Bramanti, Placido & Mazzon, Emanuela. (2020). Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches. Medicina. 56. 137. 10.3390/medicina56030137.
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci. 2019 Nov 26;30(8):839-855. doi: 10.1515/revneuro-2019-0002. PMID: 31203262.
Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic brain injury: Current treatment strategies and future endeavors. Cell Transplant. 2017, 26, 1118–1130.
Weston, N.M.; Sun, D. The potential of stem cells in treatment of traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2018, 18, 1. [CrossRef] [PubMed]
Ventura, R.E., Balcer, L.J., and Galetta, S.L. (2014). The neuro-ophthalmology of head trauma. Lancet Neurol. 13, 1006–1016.
Blennow, K., Brody, D.L., Kochanek, P.M., Levin, H., McKee, A., Ribbers, G.M., Yaffe, K., and Zetterberg, H. (2016). Traumatic brain injuries. Nat. Rev. Dis. Primers 2, 16084.
Mashkouri, S.; Crowley, M.G.; Liska, M.G.; Corey, S.; Borlongan, C.V. Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury. Neural Regen. Res. 2016, 11, 1379–1384
Xiong, L.L.; Hu, Y.; Zhang, P.; Zhang, Z.; Li, L.H.; Gao, G.D.; Zhou, X.F.; Wang, T.H. Neural stem cell transplantation promotes functional recovery from traumatic brain injury via brain derived neurotrophic factor-mediated neuroplasticity. Mol. Neurobiol. 2018, 55, 2696–2711.
Hasan, A.; Deeb, G.; Rahal, R.; Atwi, K.; Mondello, S.; Marei, H.E.; Gali, A.; Sleiman, E. Mesenchymal stem cells in the treatment of traumatic brain injury. Front. Neurol. 2017, 8, 28.
Wang, Z.; Luo, Y.; Chen, L.; Liang, W. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp. Ther. Med. 2017, 13, 3613–3618.
Luo, H.; Xu, C.; Liu, Z.; Yang, L.; Hong, Y.; Liu, G.; Zhong, H.; Cai, X.; Lin, X.; Chen, X.; et al. Neural differentiation of bone marrow mesenchymal stem cells with human brain-derived neurotrophic factor gene-modified in functionalized self-assembling peptide hydrogel in vitro. J. Cell. Biochem. 2019, 120, 2828–2835.
Zanier, E.R.; Montinaro, M.; Vigano, M.; Villa, P.; Fumagalli, S.; Pischiutta, F.; Longhi, L.; Leoni, M.L.; Rebulla, P.; Stocchetti, N.; et al. Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit. Care Med. 2011, 39, 2501–2510
Ghasemi, N. Transdi erentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran. J. Neurol. 2018, 17, 24–30
Mastro-Martinez, I.; Perez-Suarez, E.; Melen, G.; Gonzalez-Murillo, A.; Casco, F.; Lozano-Carbonero, N.; Gutierrez-Fernandez, M.; Diez-Tejedor, E.; Casado-Flores, J.; Ramirez-Orellana, M.; et al. E ects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Inj. 2015, 29, 1497–1510
Cell Therapy for Intracranial Aneurysms: A Review. Adibi A, Sen A, Mitha AP World Neurosurg. 2016 Feb; 86():390-8.
Guo S., Zhen Y., Wang A. (2017). Transplantation of bone mesenchymal stem cells promotes angiogenesis and improves neurological function after traumatic brain injury in mouse. Neuropsychiatr. Dis. Treat 13 2757–2765. 10.2147/NDT.S141534
Haus D. L., López-Velázquez L., Gold E. M., Cunningham K. M., Perez H., Anderson A. J., et al. (2016). Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Exp. Neurol. 281 1–16. 10.1016/j.expneurol.2016.04.008
Cary W. A., Hori C. N., Pham M. T., Nacey C. A., McGee J. L., Hamou M., et al. (2015). Efficient generation of induced pluripotent stem and neural progenitor cells from acutely harvested dura mater obtained during ventriculoperitoneal shunt surgery. World Neurosurg. 84 1256–1266. 10.1016/j.wneu.2015.05.076
Kobayashi Y., Okada Y., Itakura G., Iwai H., Nishimura S., Yasuda A., et al. (2012). Pre-evaluated safe human i PSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7:e52787. 10.1371/journal.pone.0052787
Gao X., Wang X., Xiong W., Chen J. (2016). In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Sci. Rep. 6:22490. 10.1038/srep22490
Lyu Q., Zhang Z. B., Fu S. J., Xiong L. L., Liu J., Wang T. H. (2017). Microarray expression profile of lncrnas and mrnas in rats with traumatic brain injury after A2B5+cell transplantation. Cell Transplant 26 1622–1635. 10.1177/0963689717723014 [PMC free article] [PubMed] [CrossRef]
Lyu Q., Zhang Z. B., Fu S. J., Xiong L. L., Liu J., Wang T. H. (2017). Microarray expression profile of lncrnas and mrnas in rats with traumatic brain injury after A2B5+cell transplantation. Cell Transplant 26 1622–1635. 10.1177/0963689717723014 [PMC free article] [PubMed] [CrossRef]
Dekmak A., Mantash S., Shaito A., Toutonji A., Ramadan N., Ghazale H., et al. (2018). Stem cells and combination therapy for the treatment of traumatic brain injury. Behav. Brain Res. 340 49–62. 10.1016/j.bbr.2016.12.039
Malinovskaya N. A., Komleva Y. K., Salmin V. V., Morgun A. V., Shuvaev A. N., Panina Y. A., et al. (2016). Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling. Front. Physiol. 7:599. 10.3389/fphys.2016.00599
Boyer-Di Ponio J., El-Ayoubi F., Glacial F., Ganeshamoorthy K., Driancourt C., Godet M., et al. (2014). Instruction of circulating endothelial progenitors in vitro towards specialized bloodbrain barrier and arterial phenotypes. PLoS One 9:e84179. 10.1371/journal.pone.0084179
Chen X., Yin J., Wu X., Li R., Fang J., Chen R., et al. (2013). Effects of magnetically labeled exogenous endothelial progenitor cells on cerebral blood perfusion and microvasculature alterations after traumatic brain injury in rat model. Acta Radiol. 54 313–323. 10.1258/ar.2012.120605
Neuroprotection in Preterm Infants - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Neuroregeneration-using-mesenchymal-stem-cells-MSCs-following-neonatal_fig8_271730614 [accessed 8 Sep, 2021]
Baker, EW, Kinder, HA, West, FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav. 2019; 9:e01214. https://doi.org/10.1002/brb3.1214
Walker P A. et al. Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: Preserving the blood brain barrier via an interaction with splenocytes. Experimental Neurology. 2010;225(2):341-352. https://doi.org/10.1016/j.expneurol.2010.07.005
Sadanandan N. et al. Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Endothelial-progenitor-cell-and-neuroprotection-Endothelial-progenitor-cells-secrete_fig1_336171698 [accessed 8 Sep, 2021]
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


